Visual Perception: Epipolar Geometry
Epipolar Geometry basics like Essential Matrix, Fundamental Matrix, Triangulation, Feature Matching are explained with their MATLAB code implementations
We learned how to use a projective camera and how to calibrate it. In this post, we will learn Epipolar Geometry, which is the intrinsic projective geometry between two views. Two views mean now we will learn how to work with more than 1 camera to perform different tasks!
Let’s take a look at Epipolar Geometry structure and its base terms:
By looking at these terms, we can understand that we will have an epipolar line for each projected point, whereas we have only 1 epipole for 1 image plane. And all the epipolar lines on the same image plane intersects on the epipole.
Another brief note I want to add is that don’t forget that until now we worked only with 1 camera which means we worked with monocular cameras while for epipolar geometry we need at least 2 monocular or 1 stereo camera which provides us multiple views.
What are we able to do using this geometry?
- We can reconstruct 3D world points using the pairs of 2D points coming from the left and right images.